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SECTION I

INTRODUCTION

This article studies some simple examples which illustrate

the working of the Martin-Lomax iteration (Ref. 1) for the com-

putation of transonic flow fields. They deal with flow fields
• linearized for the vicinity of a fixed Mach number or (in the

discussion of the shock operator) linearized with respect to a

subsonic and to a supersonic Mach number , both assumed to be fixed.
Martin (Ref .  2) has carried out similar discussions but only in
a rudimentary form; this suffices to develop and motivate his
ideas . His discussions merely serve to suggest that a stable
iteration scheme for flow computations can be obtained if one
chooses certain parameters in a sui tab le manner , while the actual
test of convergence is carried out in a more realistic setting.
For a justi fication of the Ma rtin—Lomax procedure , the present
more detailed study is there fore unnecessary. Neve rtheless , it
may have a certain interest because it provides an insight into
the working of the method. In addition , th-’re are certain diff i -
cul ti es of an intuitive character which a novice to this procedure
is likely to h ave and which the author hopes to dispel by the
present study . To be specific: in each iteration step the Martin

procedure solves a problem closely related to Poisson ’s equation ,

the solutions satisfy the boundary conditions of an ellipti c~
problem. It is not immediately clear how the solution to a hyper-

bolic problem, which has different boundary conditions and

• regions of influence can be built up in this manner. Of a

similar nature is the question how such a procedure can lead to
shocks , for one is inclined to ascribe a smoothing tendency to an
elliptic operator , but for a shock a sudden change of velocity is
characte’~istic. These objections may appear less serious if one

interprets the iterations as a time dependent process , as is done

1



in Ref. 2. Then one deals with a three dimensional problem (two

space dimensions and the time) for which the solution in the long

time limit happens to satisfy the desired two dimensional prob-

lems , which are governed by elliptic or hyperbolic operators.

Martin ’s stability analysis of the difference equation is

carried out by means of a substitute partial differential equation

which arises from the three dimensional difference formulation by

a Taylor development with respect to space and time. Strictly

speaking , such a development is valid only if the wave length of the

• perturbations is large in comparison to the grid size , and if the

changes with respect to time are only small. It is sufficient to

establish consistency of the difference scheme with the original

two dimensional partial differential equation . But the stability

analysis cannot be restricted to perturbations of this character .

Short waves (down to a wave length of twice the distance between

grid points) cannot be disregarded . It is true, in the limit of

zero grid size such waves are unimportant in a smooth starting

approximation for elliptic problems . Still they may be excited

by rounding errors. In supersonic flows and in flows with shocks,

short waves will be excited even by the starting approximation .

• In the author ’s opinion an independent analysis of the shock

point operator is inappropriate . In a shock one has a rapid change

of the gradient of the potential within a few mesh points. The

number of mesh points where this happens does not increase as the

mesh is refined . Moreover , the shock point operator is applied

• only at the shock points , that is along a line of the two dimensional

flow field . It is therefore necessary that the shock is considered

as imbedded in a supersonic-subsonic flow field .

The present report investigates questions of this kind

.2



SECTION II

DESCRIPTION OF SAMPLE PROBLEMS

Martin and Lomax use the velocity components as independent
variables. For the present discussion, it is equally convenient

to work with the velocity potential. We consider the linear

differential equation

- •

~~

-

~~
—- (u

t
) + 0 ( 1)

here u~ denotes the local deviation of the x-velocity from 1, ~ is the

perturbation potential. In our example u~ is considered as con-

stant. In studying the parabolic operator it would be necessary

to allow u~ to change continuously with x. Equation (1) arises ,

if one carries out a Prandtl—Glauert coordinate distortion for a

subsonic Mach number in a linearized differential equatio~ for
• subsonic or supersonic flow. The local Mach number is allowed

to be different from the Mach number for which the Prandtl-Glauert

coordinate distortion is carried out. The velocity fieid repre-

sented by q gives a small perturbation to the local velocity u~
The potential q is assumed to be of period L in the y direction .
Let the number of subdivisions per period in the y direction be
N, then one has a grid size

h = L/N. (2)

We have assumed that a Prandtl-Glauert transformation has already

been carried out in Equation (1); it is therefore reasonable to
assume that the grid size in the x and y direction is the same.

In analyzing the procedure we consider particular solutions

(3)3
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This solution has n full waves within the period L. In a finite

difference approximation one obtains

- 

~~ ~~Cx) £~c~(~n 
~ t} ~

- -
~~~~~~

-
~ ~

‘tx)  ~e-Xp (t ~n.~ 2 ~ .L ) ~ ~~~ (~ 
‘i’

)

Thus , one obtains

(4)

Here , n assumes values from 0 to N/2 ; n = 0 give s a one dimensional
flow. Let

The difference form of Equation ( 4 )  for  a r elliptic problem (with

constant u~ = - Iu~ I) is t:~en given by

(5)

Let the beginning and the end in the x direction of the region

under consideration be given as k = 0 and k = K.  The values of
and are prescribed as boundary conditions. For the hyperbolic

region the difference operator expressing 
~ 

is displaced by one

mesh in the upstream direction (here to the left)

-/~/1,~ 
- 2  - 

~~~~ 
0 ( 6 )

‘1



Here the values of~~and~~ are prescribed at the initial point

(k=0). To the first order in h these quantities are expressed

by~~0 and~~_1. Equation (6) expresses ek in terms of ~k-land 
~k—2. 

The initial conditions are of a nature which allows

the problem to be solved by a marching procedure .

A flow containing a shock is hyperbolic upstream (to the

left) of the shock and elliptic downstream of it. In the Murman

procedure (Reference 3) the point at which the shock operator is

to be applied is found by a separate test. In the present con-

text we deal with perturbations to a flow which already contains

a shock . These perturbations are assumed to be small enough so

that the result of this test will not be affected by the per-

turbations. Accordingly, the shock point is considered as fixed.

Let s be the subscript of the point at which the shock point

operator is applied. To the left and to the right of this point

one has respectil?ely u~ = Iu~j = const and u~, = - luL l = const.

For 1 <k < s — 1 and for s + 1 < k  < K—l , one applies respectively

the hyperbolic 2orTn (6) and the elliptic form (5) of the

difference operator. The shock point oper~tor is obtained by

replacing D (u~~ )/~x by (h)~~~((u~~ ) — (u2~ -l/2~ 
Onex x 5+112 

, X S

has uL ,S_l/2 = u~~!; uL + 1/2 — HuL l
and

• (~~) = h~
’(

~ 1,, -#~
)

and because of the shift by one mesh to the left in the hyperbolic

region

(~) 
= ~4~’f ”ç~;~, cL. )

One thus obtains for the shock point

p.

— -~~~~~~~~~ • _ _ _ _ _ _ _ _ _ _ _



We shall not carry out a study of problems containing a para-
bolic point. In such a case one would assume that uL changes

continusly from a negative to a positive value. Let k = p be

the point where the parabolic operator is to be applied . A simple
choice for is

L4
€ h

Then one would have for a point of the elliptic region , that is for

/ ‘ ~

~~~~~ 4/~4 # ’ / z  A)~
’
~ t, -~~

) ( 4 0  -Ap~:-~-~)J
- ~ ~~~~~~~~~~ 

~) ~~~, 
- C

and in the hyperbolic region , that is for p + 1 < k < K

C(rn.sj  ~f(4 -
~~~
‘ -4(~ - ,4.,) - (4.- 3/z -

Io) (#4~~, 
- 

~~~~~~~~ ) J
- c

At the parabolic point , one obtains by a procedure correspond ing

to that of a shock point

6

~~~~~~~~~~~~~~~~~~~~~~



1’
~~~

#
f t # l/L •4 16-’/~

~~~~~~~~~~~~~~ ~~ ~~~~~~~
Hence

‘I

and because of Equation (4 )

Notice that the parabolic operator provides a boundary condition
for the elliptic region . It is therefore possible to compute the
elliptic region independently. Of course , this holds only for
the present example where the transition from the elliptic to the
hyperbolic region occurs along a line x = const.

i 7



SECTION III

THE MARTIN-LOMAX ITERATION

Let us denote by ~~ the values obtained by the ~th i terat ion.
Assume that the ~k”S are known , that is , that the ~th i teration is
completed. To obtain the equations for the ( i+l) th iteration the
difference approximation for a 2

~/~y2 is expressed in terms of the
unknown values ~k

1+l ; while the difference approximations for the
x derivatives are computed for the 

~ k
1’ S. Mart in  and Lomax include

in the equations further expressions which are linear in the
evaluated once with the 4 k

1
~~ and a second time with the opposite

sign with the 
~k

1
~ 

If the iterations converge , that is, if
= 

~k 
in the limit i -

~~ ~~ , these terms cancel and one is left
with the difference approximation to the problem. These additional

expressions are of such a nature that the resulting difference

equations for the ~k
14
~~

t s have constant coefficients . Martin ’s
• preliminary analysis suggests that for a suitable choice of certain

parameters which are left arbitrary , the procedure will converge.

The equations ultimately to be solved are:

s1/ i”
(/~~ L~~)(~4,~, 

-
~~~

) - ~~~~ ~~~~~ 
-

~~~~~~~ -#k:/) - ( ‘1~~)( #; -,~~~

‘
..

/z~/(-ç~,, # Z ~4 4 ,) 7
4r eJ4) o/ic~~ .iiø~t ( 7 )

/ ii~/ (Ø4’~ - 9 . .~ 7~7 hy,iber &~//c p”*”
~

‘u ~.u/ (
~C, ~( -~.; 

~~~ 
,øy ~~~~~~~~

Similar equations arise in problems containing a parabolic point
except that then one has to take the fact  into account that ue
is not constant.

8



SECTION IV

DISCUSSION OF EQUATION (7)

Martin ’s discussion amounts to an application of the von Neumann
stability criterion to a simplified form of this equation . It is
assumed that the region extends in the x direction f r om - to + m~~

The elliptic and the hyperbolic problem will be studied separately .

The di f f e rence equation for the c~~~~ ’s has constant coefficients.
Therefore, it is natural to study par ticular solutions of Eq . (7)

of the form

~~~~

‘

~~~ir ~~~~~~~~~~~~~ (8)

where ~ is a real constant, which ranges from 0 to 1/2 . The smallest
wave length (namely 2h) occurs for ~.t = 1/2. The hypothesis Eq. (8)
guarantees that these particular solutions remain bounded for k -+ ±~~~.

The constant p ,  so far unknown, is the (complex) factor by which
each particular solution is multiplied as one proceeds from one
iteration step to the next one . One obtains immediately from Eq. (7 )

- - / 4 W2t4)... ’) - (,~~)(‘- (-~A42l*))7 - #~q~

J /j~ / ~~ £J (,h(r~*) - £
~
olt~rzt*)) ;4~ C//,,4,tic /~~ü/~ ?S

# 
( t - 2 £.R?6( Le’4’lZ’*),S £~ft(4j~~t*)) ,~r ~cr~ iic ,~~~k’.r s

From this equation, one readily computes the p
u ’s for each choice of

a1~ a2~ I ut~ 
n/N, and h. In order for the procedure to converge

in a general case , it is necessary that one finds values of the
parameters a1 and a2 in such a manner that l~~I < 1 for all va lues of

Iut t ,  n/N and ji which occur in the flow field.
To be somewhat more specific: one starts with an assumed vector

which satisfies the boundary conditions of the elliptic or
hyperbolic problem. It can be considered as a linear combination of

the desired solution (for which = 

~~~ 
and homogeneous particular

solution of the form Eq. (8 ) .  The contributions of these homogeneous

9



particular solutions become small as the iterations proceed , if < 1

for 0 < < 1/2, because they are multiplied in each iteration step with
respective values of p~~. Finally , the desired solution of the
inhomogeneous problem is left.

The analysis described so far agrees with that of Martin except
that he assumes n and ~ to be small. Such an analysis does not
provide an insight into the effect of boundary conditions at the
beg inning and at the end of a finite region ; the conditions of
boundedness at x -, ±u , which take their place , are somewhat vague .
For the homogeneous particular solutions , one has the boundary
conditions = 0 and = 0, for hyperbolic as well as for elli ptic
problems. For the elliptic problem, these conditions do not offer
any conceptual d i f f i cu l ty, for they agree with those of the original
partial differential equation. For the hyperbolic problem, one

postulates that and 
~~l 

assume the values given as initial condi-

tions in all iterations (including the starting approximation);

besides one se ts  = 0. The boundary values for and are

used when one computes the right hand side for the (i + 1)tn iteration
i . i+l

from the values of . In the computation of only the values
i+l i+1of and appear as boundary conditions.
If the homogeneous particular solutions die out in the course of

the iterat ion s , then the f ina l  solution will , of course , have the

prescribed values of 
~~ l and That is , it will sat isfy the

boundary conditions of the hyperbolic problem . There is , however ,
a question about the meaning of the condition = 0. Certainly
there is no room in a hyperbolic problem to sat isfy this condition .
This discrepancy resolves itself in the following manner . It was
mentioned above that the hyperbolic problem can be solved by a
marching procedure . The expression Eq. (6) allows one to compute
the valu.~ of ~ for some point k from points preceding k; it expresses
the requirement that the dif ferent ia l  equation in its f in i te  difference
from be satisfied at point k. This requirement is met for all
interior points of the region , that is , for 1 < k < K - 1. At the
point K , no such requirement is imposed. It follows that the value
of = 0 imposed in computing a new iteration need not coincide
with the values of which one would obtain at point K if one solves
the original difference equation (by the marching procedure). A

a

10



curve drawn through the points 
~k 

will , in general, have a break at
the point K-l. The starting approximation cannot be expected to

have the correct value of 4K l ’  for this value is not known in
advance . The contribution of the homogeneous particular solutions
to the starting solution will therefore be finite at the point K-i ,
while it is zero at point K. One sees that homogeneous particular

solutions of short wave length will play an important role in the
hyperbolic problems. In elliptic equations, a corresponding jump
tends to zero as the mesh is refined.

~ r-
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SECTION V

STABILITY

The stability of the procedure for a certain choice of the
parameters a1, a2 ,  u~ , and n/N can be studied by assuming
arbitrary ini tial conditions for • which satisfy the boundary
conditions of the homogeneous problem and by carrying the iteration
out . The system of equations for the •k~~~~’ 

is actually a three-
point recurrence relat ion with constant coefficients . It can
be efficiently solved by the method of cyclic reduction .

(Because of this method we have chosen K = 32 = 2~~) .  Such compu-
tations have been carried out for a number of cases . The
have been plotted for different values of i. A sample of these

plots is shown in Figures 1 and 2. The initial conditions chosen

are 
~k = 0 for all points except either the point k = 1 or

k = K-i. Such initial conditions could be represented by a

linear combination of the eigensolutions of the problem (with

none of the coef ficients being zero). Therefore, it cannot happen
that an eigensolution which might cause instability (that is for

which the eigenvalue has an absolute value larger than one) is

inadvertently excluded from the initial condition . In spite of

this fact, one finds practically no similarity in the convergence
behavior for these two kin ds of initial conditions .

A more detailed insight is obtained by computing the eigen-

functions and eigenvalues which determine the iteration process.

Let

4)

The uk’s are combined into a vector ~~~~. Then one obtains from Equation

(7 )  the following matrix eigenvalue problem .

[ ‘4 ~~7a ~ 1[ 4i i CJ~~
’ ir~~

I
t

12
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A , B and C are matrices of dimension K-l by k-i. Our examples

have been computed for K = 32.

b c
a b c

a b c

a b

w i t h a= l + c ~2
b = —(1— cL — (1+

c = (1 —a1)

C = — 4 sin 2 (7r~ ) 131

where 131 is the 31 by 31 identity matrix

2 —l

—l 2 —l

—l 2 —l for the elliptic case
B = 1 u 2 I ...

—l 2

A 13



- - -•

1

—2 1

1 —2 1
B — for the hyperbolic

— u~ 1 —2 1 case.

1 —2

•

1

—2 1

1 — 2  1

1 —2 1 Hyperbolic
Region

B = I u ~~I —2 1

1 —l 1 —l ~
- Shock Operator

—1 2 —1

—l 2 —l Elliptic
r Region

- 

-l~~~~~ 
-

~~~~

for the case with a shock .
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In our computations the ~~~~ point has been taken as the shock

point. The eigenfunctions and eigenvalues are computed using the

Q—Z Algorithim Ref. (4, 5)*

The case u~ I= .5; n/N = 0.05; a1 = 0; a2 = 1 has been taken
as the starting point of the explorations.

For K = 32 one has 31 eigenvalues and eigenfunctions , most
of them occur in conjugate complex pairs. Figures 3 and 4 show for

the elliptic and the hyperbolic problem the eigenvalues which lie

in the first quadrant of the complex p plane. They lie rather

close to each other. Accordingly , one will not have an outspoken

dominance of a single eigenvalue (or rather, in this case, of a

pair of conjugate complex eigenvalues~ even after a fairly large

number of iterations. Figures 6 through 17 show some of

the eigenfunctions for the elliptic and for the hyperbolic cases.

They are ordered according to the absolute value of p . The

waviness of the eigenfunctions increases as the absolute value

of p decreases. It is somewhat disturbing that at the left end of

interval the eigenfunctions are extremely small. To represent an

initial condition in which all values of 
~2 

are zero except for

4~~, requires a linear combination of the eigenfunctions with

very large coefficients . In contrast if 
~K-l 

1 and all others

are zero the coefficients of this linear combination will be of
moderate size. This explains the difference of the results in

Figures 1 and 2.

In Figures 3 and 4 some values of p which hold for an

• infinite interval are included. To obtain some similarity of
the problem for an infinite interval with the eigenvalue problem

for a finite region, we assumed that one has the same interval

but with periodicity conditions for k = 0 and k = 32. This

then selects 32 discrete eigenvalues from the continuous set

given by Equation (9). The values of p in Equation (9) are

*The algorithm is part of the EISPACK library , but it is not
yet contained in the second edition of the EISPACK Guide .

15
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found from the periodicity requirement

~~
.

hence
~~

where
_ k’/Z ( $,j .(# I(/2

The eigenvalues for periodicity conditions lie in the vicinity of

those obtained with 4) = 0 at both ends of the region , but not in a

close vicinity . The discrepancies are particularly large for the

longest and for the shortest wave lengths. To recognize the

influence of the length of the region under consideration , we have

carried out the computations with boundary conditions 4) = 0 also

for K = 16 (Fig. 5). All eigenvalues so obtained are close to some

of the eigenvalues of the problem for K = 32. One sees that the

stability analysis for an infinite interval gives results which

are different from those for a finite interval (even though 32 is

a rather large number ) . In the present example , the stability

criteria obtained for an infinite interval are conservative.

Figure 18 shows the eigenvalues for an elliptic , a hyper-

bol~c operator , and a problem with a shock. The number of eigen-

values is, of course , the same for the three cases. In this par-

ticular case one finds the remarkable result that the eigenvalues

for the shock are close either to elliptic or hyperbolic eigen-

values. The same trend , but less pronounced , is found in Figure 18

for n/N = 0. In any case , one observes that the presence of the

shock has no adverse effect on the stability of the procedure .

Figures 19, 20 and 21 give some indication of what happens

if the parameters of the problem are changed . This part of

the study is by no means exhaustive . One sees that a decrease

in n/N arid of u~ has a destabilizing effect , an increase in

a2 makes the problem less stable in the elliptic case and

more stable in the hyperbolic case.

Il-

16
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These graphs can be used to discuss the influence of
over or under relaxation between the relaxation steps. Let uk
be the kth eigenvector and let the d i f ference  between the values
of 4) in a certain iteration step and in the final solution be

K-i

expressed as Ck Uk~ 
Then one obtains in the next iteration

k=1

K-i

step for this difference E Ck ~k 
Uk~ 

The change of this
k=l K-l

difference from one step to the next is given by 
~~ 

Ck
(l_P

k)~~k
.

k= 1
If one uses a relaxation factor b then this change is applied only
partially, that is, one takes as a result of the next iteration
step 

,~

•_,, /(../

çi~ ~~~~ ‘-4)1 -
~~~~~ ~~(‘~~~( ‘-~~)~~.

For a relaxation with a relaxation factor ~~ , one therefore has
as effective eigenvalues

~ /

One will try to choose ~ in such a manner that m~x ‘o k ’ is as
small as possible; ~ is of course real. Since , for the critical
eigenvalu es~ ~k 

- 1 is nearly imaginary, one can attain only very
little improvement by the choice of a relaxation factor ~~~.

1 ’~ 17
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SECTION VI

THE “SECOND” METHOD OF MARTIN AND LOMAX

Martin and Lomax recommend an extrapolation procedure for
the results of subsequent iteration steps based on the Aitken-

Shanks formula. This formula is correct if the d: ferences between
the results of the iteration steps behave like a geometric series.

To be specific , let the results of 3 subsequent iterations be
given by 

~

1
k’ 4) k’ and and assume that the differences

- 

~~k~ ’ ~~

3
k 

- 

~~~ 
(and also subsequent differences) form

a geometric series. Then one obtains

~~~

. .. ç~~~• 7 ~ ~~~~ 
(4

~h1~
(

~
,j /f ,  

-

(10)

~ Y4)~ ~~~

~~~~~~~~~~~~~~~~~ 1~j~
)

~4

This is the Aitken-Shanks formula. Accordingly, starting with an

initial value 4)~~
, one carries out two iteration steps and then

uses this formula to extrapolate . This gives a new iritial con-

dition which is then treated in the same manner. The differences

in subsequent iteration steps can be expressed by the eigenfunctions

and eigenvalues: ECk u.K~ 
ECk ~k ~~~ 

ECk 
~~2 The individual

terms of the sums are given by geometric series. If there were a

predominant eigenval ue , then one would obtain a behavior of the
differences close to that of a geometric series after a number of

iteration steps, and one would expect this formula to be effective .

For the distribution of eigenvalues obtained under the present

circumstances, this is unlikely because the eigenvalues are so

closely spaced. An attempt to apply the procedure in the present

problem was without •~ucc?~ s. The convergence with the use of the

Aitken—Shanks formu’a ~~~ ~jorse than that of direct iterations .

18



In addition , we have used an improved version . It is

based on the observation that, in the present problem , the
eigenvalues occur in complex conjugate pairs. Under favorable

circumstances, two eigenvalues will be dominant. The general

version of the Aitken-Shanks formula holds if the differences
- - q

~~
, q

~ 
- ... are the sums of the corresponding

terms of a finite number of geometric series. This observation

can be found in the Section “Heuristic Motivation of the Transform”

of Ref. 5.

Following Shanks, we denote A~ (n = 0,1,2,...) a sequence

of numbers or functions and set

= A~ + 1 
— A~, (11)

The starting point is Equation 2 of Reference 5. For the

present purpose , we set n = k. The extrapolated value (that is

the value which one obtains by applying the Aitken-Shanks formula)

is then given by

Bk k = D1/D2 
(12)

where

/A A A . . . A  \
= I 1 (13)

M /

= ( (_ !_ _ i_ J_
~
.....J) l (14)

and M is the matrix of dimension k by k+l whose elements are given

• by

M = ~A 
= 0,1,2.. .k—l (15)i ,j  i+j  j  = 0,1,2.. .k

t• 
-
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We express the A. by the first term of the sequence A0 and the
differences t~ A~~. One has for the row vector occurring in D1

[A 0,A1,A2 1. .  .Ak] = A0[l,l,l,...1] + [0,A1—A0,A2—A0,. . .A~ —A o ]

Hence , from Equation (12),

Bk k  = A0 + D3/D2

where

D3 ~~~~~~~~~~~~ (16)

Let us evaluate Bkk under the assumption that

~ A~ = bn r~ 
, 
~ = 0, 1, 2 . . (17)

The rn ’s are the ratio of consecutive terms in the individual

geometric series. Then one obtains

A -A ~2~~A ~~2~~~ 2’ -~ ~~~~~ 
(18)

Therefore ,

[0, A1—A 0, A2—A0, . .  . ,Ak
_A

O] =

n=l 
l—r~ 

{[l ,l,l,...,l] — [1 , rn, rn
2,...,rn

k
]}

This is substituted into Equation (16). Using Equation (14), one

obtains

Bkk= A0 + 

~~~~~~~ 

l-r~ 
— D4/D2 

(19)
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where

r
~~~~~~~~~~~~~~~~~~~~~

4r
~/—4~ / — ~~

z~ 4,,. ~~~~~ ~~~~~~~ 
. .

z’~~ 2~~~r ~ ‘I r ~ 
. .

(20 )

Z Z I.~~~ 2~~~r~~’ 
. .

The rows of the k+l by k+l determinant D4 can be expressed as linear
combinations of only k vectors; which appear as the rows of the
third matrix in the following equation :

/ / / , a.
4 / ,

, - 1, ~~~~~~~ / _
~~~~ 

,, I

/ / 
~~~~~~~~~~~~~~

• • 

.

. 
. 

/ ‘:3 ~~~~~

/

7.4-I ,.4 ’  
,~~ -‘ . . (21)

L 4 -

Therefore , D4 0

and

Bkk A
0 + 

~~~~ 
bn/(l_rn)

n l

21
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With Equations (17) and (11) one then obtains

A = B kk

To take the fact into account that the dominant eigenvalues

of our problem occur in conjugate complex pairs we have used the

Aitken Shanks formula for k = 2. Then one deals with 3 by 3

determinants , and the difference between consecutive terms of the

sequences are approximately the sum of the respective terms of
two geometric series. One has specifically

/ / / (22)

~ 
44, ~&

44, aA ~ ~1i~j

a ~~~ (4~,’44) (23)

= ~.i ’4~ ~#4 4 A ~ -2AO( ~4~~~~
-444&)

~
(4A 44,)(4A.4 4 ~47)

44, ~~~~ 4,i,~

r ~~ #~~/1D~ (24)

Under certain conditions , the determinant D2, Equation (14) may

van ish . Assuming that 
~ 
A has the form (16), one has

/ I / . . . I

• Z~~ 7.,1, %4~~ Z4~~~ 
. .

z~~ 
~~~~~~~~ . . .

z ~
‘ 2’ ~~~ Z4t, ~~~~~

‘.

22



The matrix encountered here can be written as the product of three
k+l by k+l matrices

/ 0 O~~~~~~~ O / / / .

o , I. . .!  ~ ~ 
. . .~~~4

O r,~ 
,j...

~~ 4 / 
~ 

~~~~~~~~

~
Z:’).:. 

c~’ ~~~~~~~~~~~~~ 
~~~~~~~~

.

* 

&o 
~~,. / 7.~, )7~~ . .r

It is evident that D2 will vanish if two or more values rn coincide ,
or if some of the rn’ s are zero . Incidentally, the first and third
of these matrices are closely related to Vandermond ’s determinant.
On this basis , one obtains:

:D4~ r L ~ 
4. 4. . . .

•f(~~- r )(y~~~~~)(,~~~~~ ) (r
~-~~)Jjx

‘~ ?[(c -,)1/(~ - -‘ )jf (’~ - - 

~
) (~ - ‘)J4 - - ) (‘~ 

- )~
‘
~ 
-i)] - .

[(3._ ~~~., )(r - )
~ ~ 
)(3~ - 

. .. (
~. ~

) (,
~ 

- /  ) J J
(25)

If one or more of the rn’s are zero , then the sum of the corresponding
geometric series gives infinity . The extrapolation given by

Equation (12) or (24) is therefore correct, although one will
question whether the formula should be applied under these
circumstances.

The following discussions are restricted to the case k = 2.
For r2 = r1 ~ 1 one has just one geometric series rather than two.
In this case , one obtains 0/0 from Equation ( 2 4 ) .  One must go

23
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back to the formula for k = 1.. This case is characterized by
the conditions

A A0 ~i A2 — A A1
2 

= 0

and

A A
1 

A A0 — A A2
2 

= 0

The result is then given by

A0 + A A0/(l - A A
1/A A

0
)

If 
AA 0 AA 2 — AA1

2 
~ 0

but
AA1 AA3 — A A 2

2 = 0

then one of the values of r is zero and one has

AA0 = b 1 + b 2

AA1 = b2r2
2A A =  b r

2 2 2

3AA 3 = b2r 2

In this case , Equation (24)  is applicable , but one must
decide whether vanishing of one of the r ’s is compatible with the
nature of the problem.

If
A A0 AA2 — AA1

2 
= 0

but
AA1 AA3 — 

~‘ 0

then one of the r ’ s is infinite . One has

24



AA0 = b2

AA1 = b2r 2
2AA2 = b2r2

AA3 = b2r~ +

(AA 4 =~~ )

This case must , of course, be excluded although Equation (24)
will assign a limiting value to the sequence.

The case

AA0 = c1

AA1 = c1 r1 + c2

= c1 r1
2 

+ 2 c2 r1

= C1 
r1

3 + 3 C2 r~
2

arises by a limiting process where r2 -
~ r1 and b2 

-
~~ ~~ , b1 

+ 
~~~~.

Here Equation (24 ) is applicable without modifications.

We have experimented with Equation (24) as a means of

accelerating the convergence of the iterative procedure whose
results are shown in Figures 1 and 2. In this case, one generates five

consecutive values of 4)~
1) and then uses (24) to extrapolate .

The results give initia~ values for a next step of the same kind .
It was found that the results are somewhat better than those obtained
with Equation (10), but there is no noticeable improvement of the

convergence in comparison with straight iterations.

One will remember that the extrapolation procedure is a

non-linear process. It is therefore difficult to generalize

results obtained by examples.
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SECTION VII

CONCLUSIONS

The practical aspects of the Martin—Lomax iterations have been
quite thoroughly explored in the work of these authors. To this

facet of the work , the present discussions cannot claim to make
a contribution. We hope that they are useful as background

information in cases where one encounters phenomena that are
difficult to explain. In this regard, the data about eigenfunctions
and eigenvalues can be rather revealing. The observation that the

presence of a shockpoint does not lead to a significant change of
the convergence properties is , of course, reassuring . The

discussion (carried out in Section I) of the relation between the

boundary conditions for a hyperbolic problem and those used in the

present iteration scheme is important for the understanding of the
working of the procedure. According to the present examples, it
seems to be rather difficult to find values of the free parameters

and 
~2 

which guarantee convergence under all circumstances.
Martin ’s numerical experiments show that these difficulties are less

pronounced if the procedure is applied to computations of an actual

flow field. The fact that the eigenvalues p are clustered closely

around 1 (at least in the present examples) is disappointing , it may

mean that convergence is somewhat precarious ; this may create

difficulties if one wants to make procedures of this kind fully

automatic.
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Figure 3. Eigenvalues in the complex P plane for an elliptic
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Figure 4. Eigenvalues in the complex p plane for a hyperbolic
problem. !u~ I = .5, n/N = .05, a1 = 0, a2 = 1.
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